Article: Could a blood test predict whether coronavirus will kill you? Researchers find five signs for inflammation and blood vessel problems that could tell doctors which COVID-19 patients are at risk for fatal infection

  • Researchers at George Washington University tested the blood of 299 COVID-19 patients hospitalized at the school’s facility 
  • Of those, 200 had all five biomarkers linked to inflammation and blood vessel problems 
  • Higher levels of any or all of the biomarkers were linked to greater risks of ICU admission or needing to be put on a mechanical ventilator 
  • Patients with levels the highest levels of two of the five biomarkers were at greatest risk of death, suggesting blood tests could indicate who gets sickest 

By NATALIE RAHHAL ACTING US HEALTH EDITOR

PUBLISHED: 19:22 EST, 11 August 2020 | UPDATED: 10:41 EST, 12 August 2020

Researchers at George Washington University (GWU) believe that a simple blood test could predict which coronavirus patients could become deathly ill. 

The scientists have identified five biomarkers that indicate risks of complications like inflammation and bleeding disorders that make someone more likely to die if they contract coronavirus. 

High levels of two of these blood indicators, in particular, are linked to far greater odds of dying from the infection. 

The GWU team believes a blood test for these biomarkers could give doctors a clearer picture of who might need ventilator support or early aggressive treatment with a more finely tuned tool than general risk factors like age and underlying conditions. 

A blood test for five biomarkers of inflammation and blood vessel malfunctions could help doctors predict which coronavirus patients are at greatest risk of death, a new study suggests

People over the age of 65 and those with underlying conditions are typically less able to fight off any infection, not just COVID-19. 

But coronavirus has proven deadly to scores of otherwise healthy, relatively young people too – and scientists are still not sure exactly why some COVID-19 patients quickly spiral downward and others have no symptoms at all. 

And knowing who might need the most aggressive care is critical for hospitals when the threat of drug and supply shortages looms. 

New York City narrowly avoided a shortage of ventilators when it became the global epicenter of the pandemic in March and April. 

Several hospitals in hard-hit parts of Texas completely ran out of beds for coronavirus patients (or others) as cases spiked there in June and July. 

Even though Texas and other sunbelt states are seeing fewer new cases per day, hospitalization rates remain high. Florida reported a new record high number of coronavirus deaths in a single day on Tuesday and cases continue to climb in states like Georgia, Alabama, Illinois and Illinois. 

And nationwide, there are still shortages of drugs needed for patients on mechanical ventilators and of the only FDA-authorized treatment, remdesivir. 

Treating any and all patients sick enough to need to be hospitalized as early as possible is the best course of action – but it’s also a luxury doctors may not have the needed supplies are so precious. 

Grim though it may sound, health care providers may have to choose for one patient to get treatment over another – and a blood test could make these decisions both easier and more likely to be the correct ones. 

‘When we first started treating COVID-19 patients, we watched them get better or get worse, but we didn’t know why,’ said Dr Juan Reyes, study co-author and assistant professor at GW School of Medicine.

‘Some initial studies had come out of China showing certain biomarkers were associated with bad outcomes. There was a desire to see if that was true for our patients here in the US.’ 

The data that Dr Reyes and his colleagues saw out of China inspired them to assess the blood levels of five biomarkers in COVID-19 patients at GW Hospital. 

The biomarkers they looked at were: 

  • IL-6, which is short for interleukin 6, one of several cytokine immune cells that raises the alarm to other parts of the immune cell and can indicate out of control inflammation. 
  • D-dimers, which are bits of degraded protein detectable in the blood after a clot disintegrates, and signal that the virus may be attacking blood vessels. 
  • CRP, or C-reactive protein, which is released by the liver in response to inflammation. 
  • LDH, or Lactate Dehydrogenase, an enzyme in lactic acid that the body sends to heal damaged tissues. 
  • Ferritin, a protein that helps the body’s cells store iron. Iron in turn, is crucial for healthy red blood cells that carry oxygen throughout the body. Too much or too little ferritin can signal anemia or an infection that’s impairing blood cell function.     

Of the 299 COVID-19 patients whose blood they tested, the researchers found all five biomarkers in 200. 

Patients with higher levels any or all of these biomarkers were more likely to need to be treated in the ICU or put on ventilators. 

High LDH levels (greater than 1200 units/l) or high D-dimer levels (greater than 3 μg/ml) predicted the greatest risks that patients would die of coronavirus. 

‘We hope these biomarkers help physicians determine how aggressively they need to treat patients, whether a patient should be discharged, and how to monitor patients who are going home, among other clinical decisions,’ said Dr Shant Ayanian, an assistant professor and the study’s first author.

https://www.dailymail.co.uk/health/article-8617439/Could-blood-test-predict-coronavirus-kill-you.html

Article: The people with hidden immunity against Covid-19

While the latest research suggests that antibodies against Covid-19 could be lost in just three months, a new hope has appeared on the horizon: the enigmatic T cell.

By Zaria Gorvett

19th July 2020

(Image credit: Getty Images)

A scientist testing a Covid-19 vaccine on some cells (Credit: Getty Images)

The clues have been mounting for a while. First, scientists discovered patients who had recovered from infection with Covid-19, but mysteriously didn’t have any antibodies against it. Next it emerged that this might be the case for a significant number of people. Then came the finding that many of those who do develop antibodies seem to lose them again after just a few months.

In short, though antibodies have proved invaluable for tracking the spread of the pandemic, they might not have the leading role in immunity that we once thought. If we are going to acquire long-term protection, it looks increasingly like it might have to come from somewhere else.  

But while the world has been preoccupied with antibodies, researchers have started to realise that there might be another form of immunity – one which, in some cases, has been lurking undetected in the body for years. An enigmatic type of white blood cell is gaining prominence. And though it hasn’t previously featured heavily in the public consciousness, it may well prove to be crucial in our fight against Covid-19. This could be the T cell’s big moment.

When researchers tested blood samples taken years before the pandemic started, they found T cells which were specifically tailored to detect proteins on the surface of Covid-19

T cells are a kind of immune cell, whose main purpose is to identify and kill invading pathogens or infected cells. It does this using proteins on its surface, which can bind to proteins on the surface of these imposters. Each T cell is highly specific – there are trillions of possible versions of these surface proteins, which can each recognise a different target. Because T cells can hang around in the blood for years after an infection, they also contribute to the immune system’s “long-term memory” and allow it to mount a faster and more effective response when it’s exposed to an old foe.  

Several studies have shown that people infected with Covid-19 tend to have T cells that can target the virus, regardless of whether they have experienced symptoms. So far, so normal. But scientists have also recently discovered that some people can test negative for antibodies against Covid-19 and positive for T cells that can identify the virus. This has led to suspicions that some level of immunity against the disease might be twice as common as was previously thought.

Most bizarrely of all, when researchers tested blood samples taken years before the pandemic started, they found T cells which were specifically tailored to detect proteins on the surface of Covid-19. This suggests that some people already had a pre-existing degree of resistance against the virus before it ever infected a human. And it appears to be surprisingly prevalent: 40-60% of unexposed individuals had these cells.Aids is primarily a disease of T cells, which are systematically eliminated by HIV in patients who are infected by the virus (Credit: Martin Keene/PA)

Aids is primarily a disease of T cells, which are systematically eliminated by HIV in patients who are infected by the virus (Credit: Martin Keene/PA)

It looks increasingly like T cells might be a secret source of immunity to Covid-19.

The central role of T cells could also help to explain some of the quirks that have so far eluded understanding – from the dramatic escalation in risk that people face from the virus as they get older, to the mysterious discovery that it can destroy the spleen.

Deciphering the importance of T cells isn’t just a matter of academic curiosity. If scientists know which aspects of the immune system are the most important, they can direct their efforts to make vaccines and treatments that work.

How immunity unfolds

Most people probably haven’t thought about T cells, or T lymphocytes as they are also known, since school, but to see just how crucial they are for immunity, we can look to late-stage Aids. The persistent fevers. The sores. The fatigue. The weight loss. The rare cancers. The normally harmless microbes, such as the fungus Candida albicans – usually found on the skin – which start to take over the body.

Over the course of months or years, HIV enacts a kind of T cell genocide, in which it hunts them down, gets inside them and systematically makes them commit suicide. “It wipes out a large fraction of them,” says Adrian Hayday, an immunology professor at King’s College London and group leader at the Francis Crick Institute. “And so that really emphasises how incredibly important these cells are – and that antibodies alone are not going to get you through.”

During a normal immune response – to, let’s say, a flu virus – the first line of defence is the innate immune system, which involves white blood cells and chemical signals that raise the alarm. This initiates the production of antibodies, which kick in a few weeks later.

“And in parallel with that, starting out about four or five days after infection, you begin to see T cells getting activated, and indications they are specifically recognising cells infected with the virus,” says Hayday. These unlucky cells are then dispatched quickly and brutally – either directly by the T cells themselves, or by other parts of the immune system they recruit to do the unpleasant task for them – before the virus has a chance to turn them into factories that churn out more copies of itself. There's growing evidence that some people might have a hidden reservoir of protection from Covid-19 (Credit: Getty Images)

There’s growing evidence that some people might have a hidden reservoir of protection from Covid-19 (Credit: Getty Images)

The good and bad news

So, what do we know about T cells and Covid-19?

“Looking at Covid-19 patients – but also I’m happy to say, looking at individuals who have been infected but did not need hospitalisation – it’s absolutely clear that there are T cell responses,” says Hayday. “And almost certainly this is very good news for those who are interested in vaccines, because clearly we’re capable of making antibodies and making T cells that see the virus. That’s all good.”

In fact, one vaccine – developed by the University of Oxford – has already been shown to trigger the production of these cells, in addition to antibodies. It’s still too early to know how protective the response will be, but one member of the research group told BBC News that the results were “extremely promising”. (Read more about the Oxford University vaccine and what it’s like to be part of the trial).

There is a catch, however. In many patients who are hospitalised with more serious Covid-19, the T cell response hasn’t quite gone to plan.   

“Vast numbers of T cells are being affected,” says Hayday. “And what is happening to them is a bit like a wedding party or a stag night gone wrong – I mean massive amounts of activity and proliferation, but the cells are also just disappearing from the blood.”

One theory is that these T cells are just being redirected to where they’re needed most, such as the lungs. But his team suspects that a lot of them are dying instead.

“Autopsies of Covid-19 patients are beginning to reveal what we call necrosis, which is a sort of rotting,” he says. This is particularly evident in the areas of the spleen and lymph glands where T cells normally live.

Disconcertingly, spleen necrosis is a hallmark of T cell disease, in which the immune cells themselves are attacked. “If you look in post-mortems of Aids patients, you see these same problems,” says Hayday. “But HIV is a virus that directly infects T cells, it knocks on the door and it gets in.” In contrast, there is currently no evidence that the Covid-19 virus is able to do this.

“There are potentially many explanations for this, but to my knowledge, nobody has one yet,” says Hayday. “We have no idea what is happening. There’s every evidence that the T cells can protect you, probably for many years. But when people get ill, the rug seems to be being pulled from under them in their attempts to set up that protective defence mechanism.”T cells can lurk in the body for years after an infection is cleared, providing the immune system with a long-term memory (Credit: Reuters/Alkis Konstantinidis)

T cells can lurk in the body for years after an infection is cleared, providing the immune system with a long-term memory (Credit: Reuters/Alkis Konstantinidis)

Dwindling T cells might also be to blame for why the elderly are much more severely affected by Covid-19.  

Hayday points to an experiment conducted in 2011, which involved exposing mice to a version of the virus that causes Sars. Previous research had shown that the virus – which is also a coronavirus and a close relative of Covid-19 – triggered the production of T cells, which were responsible for clearing the infection.

The follow-up study produced similar results, but the twist was that this time the mice were allowed to grow old. As they did so, their T cell responses became significantly weaker.

However, in the same experiment, the scientists also exposed mice to a flu virus. And in contrast to those infected with Covid-19, these mice managed to hold onto their T cells that acted against influenza well into their twilight years.

“It’s an attractive observation, in the sense that it could explain why older individuals are more susceptible to Covid-19,” says Hayday. “When you reach your 30s, you begin to really shrink your thymus [a gland located behind your sternum and between your lungs, which plays an important role in the development of immune cells] and your daily production of T cells is massively diminished.”

What does this mean for long-term immunity?

“With the original Sars virus [which emerged in 2002], people went back to patients and definitely found evidence for T cells some years after they these individuals were infected,” says Hayday. “This is again consistent with the idea that these individuals carried protective T cells, long after they had recovered.”

The fact that coronaviruses can lead to lasting T cells is what recently inspired scientists to check old blood samples taken from people between 2015 and 2018, to see if they would contain any that can recognise Covid-19. The fact that this was indeed the case has led to suggestions that their immune systems learnt to recognise it after being encountering cold viruses with the similar surface proteins in the past.   

This raises the tantalising possibility that the reason some people experience more severe infections is that they haven’t got these hoards of T cells which can already recognise the virus. “I think it’s fair to say that the jury is still out,” says Hayday.

Unfortunately, no one has ever verified if people make T cells against any of the coronaviruses that give rise to the common cold. “To get funding to study this would have required a pretty Herculean effort,” says Hayday. Research into the common cold fell out of fashion in the 1980s, after the field stagnated and scientists began to move to other projects, such as studying HIV. Making progress since then has proved tricky, because the illness can be caused by any one of hundreds of viral strains – and many of them have the ability to evolve rapidly.   While antibodies are still important for tracking the spread of Covid-19, they might not save us in the end (Credit: Reuters)

While antibodies are still important for tracking the spread of Covid-19, they might not save us in the end (Credit: Reuters)

Will this lead to a vaccine?

If old exposures to cold viruses really are leading to milder cases of Covid-19, however, this bodes well for the development of a vaccine – since it’s proof that lingering T cells can provide significant protection, even years after they were made.

But even if this isn’t what’s happening, the involvement of T cells could still be beneficial – and the more we understand what’s going on, the better.

Hayday explains that the way vaccines are designed generally depends on the kind of immune response scientists are hoping to elicit. Some might trigger the production of antibodies – free-floating proteins which can bind to invading pathogens, and either neutralise them or tag them for another part of the immune system to deal with. Others might aim to get T cells involved, or perhaps provoke a response from other parts of the immune system.

“There really is an enormous spectrum of vaccine design,” says Hayday. He’s particularly encouraged by the fact that the virus is evidently highly visible to the immune system, even in those who are severely affected. “So if we can stop whatever it’s doing to the T cells of the patients we’ve had the privilege to work with, then we will be a lot further along in controlling the disease.”

It seems likely that we are going to be hearing a lot more about T cells in the future.

https://www.bbc.com/future/article/20200716-the-people-with-hidden-protection-from-covid-19

Viral Risk Assessment Through Deep Machine Learning of Genetic Testing

Daniel A. Brue, PhD

Abstract 

In this document, we outline the goals and purpose of General Genomics, and its methodology for providing metrics of viral disease propagation and individual susceptibility and response. We have developed a process to quantitatively define an individual’s risk during the COVID-19 pandemic, though the methods apply equally for other diseases as well. In this way, we are able to provide insights into disease propagation, population susceptibility, and personal risk to infection. With this information, we will help businesses, governments, and individuals to make better choices regarding public and personal safety. 

______________________________________
1 https://curo46.com 

Introduction 

General Genomics LLC is an endeavor to answer some of the questions regarding virus susceptibility, spread, and individual response to illnesses. The COVID-19 global pandemic is currently still in effect and likely will continue through several more months. This provides both a strong motivation and an unprecedented opportunity in studying viras dispersion and human reaction to specific virus infection. At no time in history have we had more information with which to work. Indeed, the most common comparison we use is the influenza outbreak of 1918. Today, modern technology provides a far better understanding of how COVID-19 has spread across the world and far more accurate medical tools for detecting and treating the disease. 

General Genomics has developed a process for using available data to provide risk assessments. This result is called a Risk Under Normalcy (RUN) score. 

The RUN score is a metric that gives a quantitative measure of individual risk of disease susceptibility. The RUN score is a result of multivariate factors that includes testing for genetic markers that may make one more or less inclined to infections. It has been shown that there do 2 exist genetic predispositions that affect one’s susceptibility and resilience to COVID-19 as well as other diseases. 

Data Collection 

General Genomics has developed a survey and an application interface that allows individuals or medical institutions to provide a person’s genetic information and demographic factors. Using either the app available on Google Play or the Apple Store, or through survey.curo46.com, anyone can upload their genetic information and any other factors they might supply, and they will receive a RUN score with a report of their most significant risk factors. 

Data Management 

All data collected will be stored and managed according to HIPAA compliance and user license agreements. Only data in aggregate will be shared or used for analysis, and individual identification will not be used for tracking. 

Several methodologies are available for managing COVID-19 data 3 . Initially, a simple queried database will be sufficient, but will transfer into a more reliable cloud system as need arises. 

______________________________________
2 https://www.nature.com/articles/s41467-020-16256-y
3 https://arxiv.org/abs/2005.05036 

Analytic 

Some work has been published in tracking propagation of COVID-19 based on statistical inference 45 including Johns-Hopkins6 , the CDC7 , research has shown that certain genetic markers are correlated with COVID0-19. With sufficient data, we will be able to confirm and/or refine these conclusions and will publish our findings. 

Many options already exist for machine learning and artificial intelligence (ML/AI) codes, and the methodology deployed by General Genomics will be chosen based on available data types and the specific questions to be answered. The chosen methods will be compared, weighted, and tuned based on empirical field data. 

Questions: 

Initial analysis shows which factors are most significant in answering the following questions: 
1. Which genetic markers are most significant to an individual’s risk of contracting COVID-19?
2. Which environmental factors, including workplace exposure, family interaction, and general exposure to the public, are most influential in a person’s general risk?
3. What independent factors, such as smoking, prescription medication, etc. should be considered in diagnosis and treatment plans?
4. Can we increase the accuracy of models tracking and predicting the spread of the pandemic by having a much more accurate understanding of human response and resilience? 

By identifying significant factors, the resultant RUN score is far more than just a number, but allows a person to weigh their own risks and take mitigating measures to reduce their risk. For example, we can provide a list of the most significant factors adding to someone’s risk, thereby allowing the person to make better informed choices for self protection and care. 

Expected Results: 

1. Inform an individual and their medical care provider information on the individual’s risk and primary risk factors. 

______________________________________
4 https://arxiv.org/abs/2005.05086
5 https://arxiv.org/abs/2005.04937
6 https://arxiv.org/abs/2005.05060
7 https://www.cdc.gov/coronavirus/2019-ncov/index.html 

2. Inform businesses that track RUN scores on their aggregate risk by allowing them to set policy on high or low risk customers, especially in situations of high population density and personal interaction.
3. Provide data on similar cases and which treatments have been most effective in combating the disease.
4. An assessment of how the disease spreads, including factors, but not limited to, social distancing and isolation. 

Based on results, the model will be continuously updated and refined. As new factors present themselves, we will be able to develop improved products to better inform the population, business, and the scientific medical community of the results. We will also be able to provide increasingly accurate products and services.

Press Release: ZoomAway Jointly Develops Patent Pending App to Provide Business Safety Rating and Certification During COVID-19

VANCOUVER, BC / ACCESSWIRE / May 19, 2020 / In response to the current global pandemic, ZoomAway Travel Inc. (ZMA.V)(ZMWYF) (the “Company” or “ZMA”) www.zoomaway.com, a leader in the hospitality technology sector, is pleased to announce that it has created a joint development project with General Genomics (www.curo46.com). The product is an innovative, patent pending app that allows businesses, restaurants, churches and other gathering places to display their COVID-19 preparedness called Shield Score™.

Shield Score™ was developed to instill confidence and peace of mind in consumers. Businesses can address safety and governmental compliance concerns by utilizing the app. The Shield Score™ app provides a rating that can be posted online and at their place of business, generated by employing the proprietary processing of data garnered from the business owners. When used in conjunction with GGI’s CURO46 individual risk assessments, further adverse economic impacts could be avoided now and with any future outbreaks. The app is targeted for release by June 1st and is relevant for current and future pandemics.

Check out our promotional videos:

Sean Schaeffer, Zoomaway CEO stated, “As businesses are starting to re-open, there is a lot of confusion and uncertainty as to what is being done to support the public’s safety at each location. We have adapted our combined expertise to meet current needs. The business community is searching for anything that will provide their customers with a sense of security and easy access to their current safety measures and re-opening procedures. We are currently working on key endorsements from several Nevada based governmental and business entities, we believe that this product could become the official “seal of approval” that helps bring business back.”

GGI’s Warren Gieck reported, “By joining forces with ZoomAway and their expertise in hospitality, we believe we have found a way to get people moving again. The public needs assurance that they can go about their daily lives with confidence. CURO46 provides individuals with their own assessment of risk. Shield Scores rating of safety does the same thing for venues and businesses.”

For additional information contact: Sean Schaeffer, President, ZoomAway Inc., at 775-691-8860 | sean@zoomaway.com or stay up-to-date and sign up for our newsletter.

About Us

ZoomAway, Inc. (Nevada Co.) Zoomaway Travel Inc. is a technology company that is revolutionizing the Hospitality and Travel Industries. We have developed a variety of software solutions that enhance the planning and engagement of everyday tourists. Our flagship project, ZoomedOUT, is a complete modernization and re-imagination of mobile travel apps. In a full 3D environment, we are able to integrate planning, booking, social media, and camaraderie into a tangibly rewarding experience. We are combining Travel, Hospitality, Mobile Gaming and Augmented Reality to change the way users travel into 2020 and beyond. Additional information about ZoomAway Inc. can be found at www.zoomaway.com.

ZMA Travel Game Inc. (Canadian Co.) (formerly TravelGameBlockChain Technology Inc.) is a ZoomAway Travel Inc. subsidiary company dedicated to housing new projects in the digital games. The company’s first project is ZoomedOUT, being developed with the assistance of Zero8 Studios, Inc., which can be seen at zoomedout.io. To receive more detailed, or investor level information, please contact us at sean@zoomaway.com and we will respond with the appropriate documentation depending on your request.

Forward-Looking Statements

This release includes certain statements that may be deemed “forward-looking statements”. All statements in this release, other than statements of historical facts, that address events or developments that the Company expects to occur, are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words “expects”, “plans”, “anticipates”, “believes”, “intends”, “estimates”, “projects”, “potential” and similar expressions, or that events or conditions “will”, “would”, “may”, “could” or “should” occur. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in the forward-looking statements. Factors that could cause the actual results to differ materially from those in forward-looking statements include regulatory actions, market prices, and continued availability of capital and financing, and general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of the Company’s management on the date the statements are made. Except as required by applicable securities laws, the Company undertakes no obligation to update these forward-looking statements in the event that management’s beliefs, estimates or opinions, or other factors, should change.

Neither the TSX Venture Exchange nor it’s Regulation Service Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. The TSX Venture Exchange Inc. has in no way passed upon the merits of the proposed Offering and has neither approved nor disapproved the contents of this press release.

SOURCE: ZoomAway Travel Inc.



View source version on accesswire.com:
https://www.accesswire.com/590429/ZoomAway-Jointly-Develops-Patent-Pending-App-to-Provide-Business-Safety-Rating-and-Certification-During-COVID-19

https://finance.yahoo.com/news/zoomaway-jointly-develops-patent-pending-130000847.html?.tsrc=rss

Press Release: ZoomAway Signs Agreement with General Genomics

May 7, 2020

VANCOUVER, BC / ACCESSWIRE / May 7, 2020 / In response to the current global pandemic, ZoomAway Travel Inc. (ZMA.V) (ZMWYF) (the “Company” or “ZMA”) www.zoomaway.com, a leader in the hospitality technology sector, is proud to announce that it has entered into a Memorandum of Understanding (MOU) with General Genomics, Inc. (“GGI,” a Delaware Corporation, www.Curo46.com), to distribute “GeneSuite,” GGI’s patent pending, proprietary human health risk assessment technology, to hotels, casinos, sporting events and other hospitality-related entities, within the state of Nevada. Through machine learning and artificial intelligence, GeneSuite offers its clients the most comprehensive analysis of disease susceptibility and treatment effectiveness ever developed. It provides individuals with a clearer understanding of their susceptibility and treatability of diseases, with an initial focus on COVID-19. It also tracks a population’s health status by estimating what risks exist in the surrounding area or within facilities, and who might have been sick. An individual’s unique QR code is scanned at entrances to venues and properties, helping to determine the health of the general public, where mitigating health risks needs to be the priority.

CEO Sean Schaeffer explained, “Nevada’s tourism industry is currently still shut down and everyone is working hard to find the most effective ways to move forward and keep customers and employees safe. The future of travel will insist on safe protocols, both for leisure and corporate travel. By integrating technologies like GeneSuite, we hope to create systems for our partners and their customers that are able to assess risk levels allowing safer travel. Whether its pre-reservation screenings, virus tracking, or on site check in and scanning procedures, we believe that we can successfully integrate this amazing process into an ever changing and evolving hospitality environment. Predictive analytics can use the current impact of the virus and associated travel complications to show the impact on future travel, safety and resulting revenue possibilities. Besides creating new systems to use these features for our clients, Zoomaway will also look to add these processes to products such as its new Social Relevance platform, as well as ZoomedOUT and ZoomEvents.”

Warren Gieck, co-founding partner of General Genomics said, “Nevada is the perfect spot to introduce GeneSuite. Las Vegas is a worldwide destination and we know the resort casinos and tourism industry in general are anxious to safely open once again. ZoomAway has experience working hand in hand with the casinos and we chose them because of their contact base and know how in system integration. We know that as the world returns to normal there may very well be a second round of incidents in places where many people will congregate. Our product, when used properly, will allow venue owners to screen attendees in such a fashion as to curb the spread of infectious diseases.”

GGI’s Proprietary Predictive Algorithm (PPA) uses machine learning that analyzes thousands of variables across billions of records. Where most current studies, by design, look at one variable at a time and cannot find complex relationships, GGI’s PPA is finding relationships that could not previously be validated. In addition, efforts to establish predictive risk models of disease propagation are generally not based on medical information (DNA analysis and medical histories), so they are unable to determine and integrate correlation factors, susceptibility, or treatment successes. GGI’s solution provides an ecosystem that includes methods for collecting and standardizing health, genetic and diagnostic data, the building of correlative world population models using machine learning and artificial intelligence, and quantitative analysis of the susceptibility of living organisms to illnesses such as COVID-19.

The MOU is intended to be a confirmation of interest between the parties in pursuing negotiations for the drafting of a specific Limited License Agreement based on terms to be determined (TBD) and does not constitute a binding agreement at this time. Once the terms are known, the company will issue a subsequent news release. The Company is not making any express or implied claims that its mass screening product has the ability to eliminate, cure or contain the Covid-19 (or SARS-2 Coronavirus) at this time.

For additional information contact: Sean Schaeffer, President, ZoomAway Inc., at 775-691-8860 | sean@zoomaway.com or stay up-to-date and sign up for our newsletter.

About Us

ZoomAway, Inc. (Nevada Co.) Zoomaway Travel Inc. is a technology company that is revolutionizing the Hospitality and Travel Industries. We have developed a variety of software solutions that enhance the planning and engagement of everyday tourists. Our flagship project, ZoomedOUT, is a complete modernization and re-imagination of mobile travel apps. In a full 3D environment, we are able to integrate planning, booking, social media, and camaraderie into a tangibly rewarding experience. We are combining Travel, Hospitality, Mobile Gaming and Augmented Reality to change the way users travel into 2020 and beyond. Additional information about ZoomAway Inc. can be found at www.zoomaway.com.

ZMA Travel Game Inc. (Canadian Co.) (formerly TravelGameBlockChain Technology Inc.) is a ZoomAway Travel Inc. subsidiary company dedicated to housing new projects in the digital games. The company’s first project is ZoomedOUT, being developed with the assistance of Zero8 Studios, Inc., which can be seen at zoomedout.io. To receive more detailed, or investor level information, please contact us at sean@zoomaway.com and we will respond with the appropriate documentation depending on your request.

About Zero8 Studios, Inc.

Zero8 Studios, based in Reno, Nevada, specializes in new and innovative games and technology platforms. With a focus on social gaming and almost two decades of experience building
countless game titles, gaming platforms, and various technologies. The Zero8 Studios’ team has assisted dozens of AAA publishers, large clientele, manufacturers, and casinos in the design, production, and delivery of their products to players around the world. Additional information can be found at www.zero8studios.com.

Forward-Looking Statements

This release includes certain statements that may be deemed “forward-looking statements”. All statements in this release, other than statements of historical facts, that address events or developments that the Company expects to occur, are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words “expects,” “plans,” “anticipates,” “believes,” “intends,” “estimates,” “projects,” “potential” and similar expressions, or that events or conditions “will,” “would,” “may,” “could” or “should” occur. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in the forward-looking statements. Factors that could cause the actual results to differ materially from those in forward-looking statements include regulatory actions, market prices, and continued availability of capital and financing, and general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of the Company’s management on the date the statements are made. Except as required by applicable securities laws, the Company undertakes no obligation to update these forward-looking statements in the event that management’s beliefs, estimates or opinions, or other factors, should change.

Neither the TSX Venture Exchange nor it’s Regulation Service Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. The TSX Venture Exchange Inc. has in no way passed upon the merits of the proposed Offering and has neither approved nor disapproved the contents of this press release.

SOURCE: ZoomAway Travel Inc.



View source version on accesswire.com:
https://www.accesswire.com/588887/ZoomAway-Signs-Agreement-with-General-Genomics

https://finance.yahoo.com/news/zoomaway-signs-agreement-general-genomics-133000520.html

Article: Nature Publication Presents New ‘Blueprint’ Revealing How SARS-CoV-2 Virus Hijacks Human Cells

Points to Drugs with Potential to Fight COVID-19, and a Drug that Promotes Infection

An international team of more than 120 scientists has detailed the impact of 75 over-the-counter prescription and development-stage drug compounds on SARS-CoV-2, the virus that causes COVID-19. Several of these agents show promise in blocking SARS-CoV-2 replication in laboratory experiments. One compound investigated in the research, a common ingredient in over-the-counter cough medicines, appears to have the potential to promote the growth of the virus.

The collaborative study, published in Nature on April 30, 2020, was assembled and led by Nevan Krogan, PhD, director of the Quantitative Biosciences Institute at UC San Francisco and a senior investigator at Gladstone Institutes. As the first hints of the pandemic emerged in January, over a matter of just a few weeks, Krogan formed a rapid-response research team of dozens of scientists and clinicians – hailing from UCSF, Gladstone, Icahn School of Medicine at Mount Sinai in New York, and Institut Pasteur in Paris – to search for potential treatments for COVID-19.

Nevan Krogan talks with the QBI COVID-19 team
Nevan Krogan (center), PhD, and his collaboration of scientists around the world have fast-tracked efforts to find the proteins in cells that get highjacked by COVID-19. Photo by Susan Merrell

Rather than focusing on an antiviral approach to block SARS-CoV-2, the researchers first combined biological and computational techniques to create a “blueprint” of more than 300 human proteins that the virus requires to infect human cells and to thrive and replicate in the body. They then explored the question of which drugs, both those that are currently marketed as well as those in development, might be repurposed to treat SARS-CoV-2 infection by targeting those human proteins.

The researchers emphasize that, while the drugs identified in the study are promising, they have only been tested against the virus in laboratory experiments. The researchers do not advocate anyone prescribing and/or using the drugs unless human clinical trials find them to be safe and effective.

Repurposed Compounds Show Promise for Fighting COVID-19; Further Research Needed

Looking at a list of drugs that interact with the protein blueprint, UCSF researchers Brian Shoichet, PhD, professor of pharmaceutical chemistry, and Kevan Shokat, PhD, professor of cellular and molecular pharmacology and a Howard Hughes Medical Institute investigator, led studies employing chemical biology and computational approaches. Two drug categories emerged as promising agents to effectively reduce viral infectivity: protein translation inhibitors (including zotatifin and ternatin-4), and drugs that modulate proteins inside the cell known as Sigma1 and Sigma2 receptors (including progesterone, PB28, PD-144418, hydroxychloroquine; the antipsychotic drugs haloperidol and cloperazine; siramesine, an antidepressant and anti-anxiety drug; and the antihistamines clemastine and cloperastine).

Among the protein translation inhibitors, the strongest antiviral effect in vitro was seen with zotatifin, which is currently in clinical trials for cancer, and ternatin-4, which was discovered and developed in the UCSF laboratory of Jack Taunton, PhD, professor of cellular and molecular pharmacology.

Among the Sigma1 and Sigma2 modulators, the antipsychotic haloperidol, used to treat schizophrenia, showed antiviral activity against SARS-CoV-2. Olanzapine, used to treat both schizophrenia and bipolar disorder, had no measurable effect on the virus. Two potent antihistamines, clemastine and cloperastine, displayed antiviral activity, as did PB28 and to a lesser extent the female hormone progesterone.

“While a large amount of COVID-19 therapeutic development research focuses on the antivirals and vaccines, we’ve taken a different approach, targeting the human counterparts and vulnerabilities required for viral infection in a human cell,” said Krogan. “Our work leverages approved and development-stage molecules and will help to focus clinical trials toward the most promising agents to combat COVID-19. We also continue to search for additional agents that target the human proteins used by SARS-CoV-2 to expand the armamentarium against the virus,” he said.

“While these are early data, we have a high degree of confidence in the results, since similar observations on the antiviral activity of these drugs arose from work done independently at both Mount Sinai and Institut Pasteur. Research at this speed and magnitude could only have been accomplished through a collaborative effort from several scientists at multiple institutions, each bringing unique but complementary skill sets towards a common research goal,” said Adolfo García-Sastre, PhD, professor in the Department of Microbiology and director of the Global Health and Emerging Pathogens Institute of the Icahn School of Medicine at Mount Sinai.

García-Sastre led the virological studies along with Marco Vignuzzi, PhD, principal investigator in the Viral Populations Unit at Institut Pasteur in Paris. Vignuzzi commented, “This study provides novel potential antiviral strategies that need to be explored, and it is unique in that it extends our knowledge on our basic understanding of how the virus interacts with the host.”

PB28 Shows Significantly Greater Antiviral Activity than Hydroxychloroquine

Among drugs targeting Sigma1 and Sigma2 receptors, a preclinical compound called PB28 had approximately 20 times greater antiviral activity in laboratory experiments than hydroxychloroquine, which is being studied as a potential therapy for COVID-19 in multiple clinical trials.

Theory for Cardiac Side Effects of Hydroxychloroquine

The new study presents a possible explanation for the serious cardiac side effects observed in some halted clinical studies of hydroxychloroquine. The researchers showed that, in addition to targeting the Sigma1 and -2 receptors, hydroxychloroquine also binds to a protein known as hERG, which is critical for regulating electrical activity in the heart. These laboratory findings may help explain the possible risks associated with this agent as a potential therapy for COVID-19.

Caution Urged for Dextromethorphan

Finally, the cough suppressant dextromethorphan, which acts on Sigma1 receptors, promoted viral infection in the laboratory experiments, and the researchers said that its use merits caution and warrants further study in the context of COVID-19.

Next Step: Testing Compounds in Animal and Human Clinical Studies for COVID-19

Krogan said the next step is to further investigate the most promising compounds to advance them as quickly as possible through clinical trials. “We are working with several pharma and biotech companies to evaluate the antiviral effectiveness and safety of drug candidates that showed the most promise in our laboratory experiments,” he said. “Conversely, because our research shows that dextromethorphan promotes SARS-CoV-2 infection in the laboratory, we urge that this compound be used prudently during the pandemic.”

Shokat added, “Our collaborative efforts have successfully mapped the proteins in the human body associated with SARS-CoV-2 infection, which has informed swift, science-based drug discovery. Uncovering the proteins targeted by this coronavirus has unveiled compounds across different drug classes that might have otherwise not have been obvious to study in a viral setting.”

Background on Innovative Scientific Approach

The researchers introduced the coronavirus proteins into human cells in culture. Once inside the cells, the viral proteins found specific human proteins that they could latch onto – very much as they would during a normal infection.

After identifying these proteins and determining small molecules known to bind them based on prior scientific research, the scientists identified 69 molecules that seemed most promising based on their targeting specificity.

Subsequently, the team assessed the impact of 47 of these compounds in cells infected with live virus, as well as an additional 28 compounds known to act on two key targets identified by other methods. These experiments were required to quickly establish robust and quantitative viral replication inhibition assays under high biocontainment to study the impact of these compounds on the biological cycle of the SARS-CoV-2 virus.  

Aside from helping scientists quickly identify the most promising drug candidates to pursue, which may result in the initiation of new clinical trials, these results also provide broad insights into SARS-CoV-2 infection. Scientists can use this information to understand or anticipate the effect of experimental treatments already attempted in the clinic. Additionally, this novel approach for drug discovery can be leveraged across other viral and nonviral diseases.

Authorship and funding: This work was funded by grants from the National Institutes of Health, the National Institute of Mental Health, the Defense Advanced Research Projects Agency, the Center for Research for Influenza Pathogenesis, the Centers of Excellence for Influenza Research and Surveillance of the National Institute of Allergy and Infectious Diseases, the Centers of Excellence for Integrative Biology of Emerging Infectious Diseases of the Agence Nationale de la Recherche (France), F. Hoffmann-LaRoche AG, Vir Biotechnology, and the Ron Conway Family. Shokat is a Howard Hughes Medical Institute investigator. A complete list of authors and full funding information is available in the Nature paper.

About UCSF: The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. UCSF Health, which serves as UCSF’s primary academic medical center, includes top-ranked specialty hospitals and other clinical programs, and has affiliations throughout the Bay Area.

About QBI: The Quantitative Biosciences Institute (QBI) fosters collaborations across the biomedical and the physical sciences, seeking quantitative methods to address pressing problems in biology and biomedicine. Motivated by problems of human disease, QBI is committed to investigating fundamental biological mechanisms, because ultimately solutions to many diseases have been revealed by unexpected discoveries in the basic sciences. Learn more at qbi.ucsf.edu.

About Gladstone Institutes: To ensure our work does the greatest good, Gladstone Institutes focuses on conditions with profound medical, economic, and social impact – unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with UC San Francisco. Learn more at gladstone.org.

About the Mount Sinai Health System: The Mount Sinai Health System is New York City’s largest academic medical system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai is a national and international source of unrivaled education, translational research and discovery, and collaborative clinical leadership ensuring that we deliver the highest quality care – from prevention to treatment of the most serious and complex human diseases. The Department of Microbiology and the Global Health and Emerging Pathogens Institute at ISMMS is comprised of several research groups advancing research and understanding on emerging and re-emerging virus pathogens, and has quickly reacted to the COVID-19 pandemic by dedicating research and clinical resources to mitigate COVID-19. For more information, visit mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.

About the Institut Pasteur and the Institut Pasteur International Network: The Institut Pasteur, a non-profit foundation with recognized charitable status established by Louis Pasteur in 1887, is today an internationally renowned center for biomedical research with a network of 32 institutes worldwide. In the pursuit of its mission to prevent and control diseases in France and throughout the world, the Institut Pasteur operates in four main areas: research, public health, education and training, and development of research applications. A globally recognized leader in infectious diseases, microbiology, and immunology, the institute also investigates cancer, genetic and neurodegenerative diseases, genomics and developmental biology. Its research aims to expand knowledge of the living world in a bid to lay the foundations for new prevention strategies and novel therapeutics. Since its inception, ten Institut Pasteur scientists have been awarded the Nobel Prize for Medicine, including two in 2008 for the 1983 discovery of the human immunodeficiency virus (HIV) that causes AIDS. Visit pasteur.fr for more information.

https://www.ucsf.edu/news/2020/04/417321/nature-publication-presents-new-blueprint-revealing-how-sars-cov-2-virus?utm_source=join1440&utm_medium=email&utm_placement=itkst

Paper: Do Your Genes Predispose You to COVID-19?

Individual differences in genetic makeup may explain our susceptibility to the new coronavirus and the severity of the disease it causes

By Loïc Mangin on April 30, 2020

Do Your Genes Predispose You to COVID-19?
Determining blood type in the ABO group system. Credit: Getty Images

Since the start of the COVID-19 pandemic several months ago, scientists have been puzzling over the different ways the disease manifests itself. They range from cases with no symptoms at all to severe ones that involve acute respiratory distress syndrome, which can be fatal. What accounts for this variability? Might the answer lie in our genes?

Coronaviruses have raised such questions for more than 15 years. In researching the 2003 outbreak of severe acute respiratory syndrome (SARS), Ralph Baric and his colleagues at the University of North Carolina at Chapel Hill identified a gene that, when silenced by a mutation, makes mice highly susceptible to SARS-CoV, the coronavirus that causes the disease. Called TICAM2, the gene codes for a protein that helps activate a family of receptors, called toll-like receptors (TLRs), that are involved in innate immunity, the first line of defense against pathogens.

Attention has now shifted to SARS-CoV-2, the new coronavirus that causes COVID-19. And TLRs have once again drawn researchers’ interest—this time to help explain the excess number of men who suffer from severe infections.

Men made up 73 percent of severe cases of COVID-19 in intensive care in France, according to a national survey published April 23. Behavioral and hormonal differences may be partially responsible. But genes may also factor into the mix. Unlike men, women have two X chromosomes and so carry double the copies of the gene TLR7, a key detector of viral activity that helps boost immunity.

The genetics of blood groups may offer some insight into whether you are liable to be infected with the virus. In late March Peng George Wang of the Southern University of Science and Technology in China and his colleagues released the results of a preprint study—not yet peer-reviewed—that compared the distribution of blood types among 2,173 COVID-19 patients in three hospitals in the Chinese cities of Wuhan and Shenzhen with that of uninfected people in the same areas. Blood type A appears to be associated with a higher risk of contracting the virus, whereas type O offers the most protection for reasons that have yet to be determined.

<See the link below for the rest of the article>

https://www.scientificamerican.com/article/do-your-genes-predispose-you-to-covid-19/?amp=true

Koco News: Local researcher forming team to study how genetics influences severity of COVID-19

Patrina Adger Reporter

OKLAHOMA CITY —

There are so many unknowns when it comes to the COVID-19 coronavirus, one being why are so many people getting the deadly disease while others show no signs?

Daniel Brue, a local researcher with General Genomics, is forming a study on how genetics influences the severity of the virus, who is more likely to get it and why.

“We never had as much feedback on a pandemic as what we are having today,” Brue said. “We know there are certain factors that are influencing this.”

Brue is leading the research team from Oklahoma City. He said the information collected from genetic markers and family history is similar to what you’d obtain through Ancestry.com or 23and Me matching.

“We can start tracking populations that have more susceptibility to COVID-19 and, ultimately, to other diseases as well,” Brue said.

Brue and his team also will work to figure out how viral patients respond to different treatments based on their genetics.

“That helps in the individual who may become ill, and it also helps their clinician in giving and describing a better treatment,” he said.

Brue told KOCO 5 that they are hoping to get federal support to help fund the study so results can come back quicker.

https://www.koco.com/article/local-researcher-forming-team-to-study-how-genetics-influences-severity-of-covid-19/32216307

Edmond Sun: Investigator unraveling mystery of COVID-19 genetic markers and virus susceptibility

Local genome researcher Daniel Brue investigates why some people are more susceptible to COVID-19 while others are not. As an inventor and the founder of General Genomics, he has established a group of people in an attempt to find more information and correlations between genetic markers and virus susceptibility of COVID-19.

Investigator unraveling mystery of COVID-19 genetic markers and virus susceptibility

The findings could potentially reveal effective methods of treatment against the virus.

“What we do know now is that there is a significant part of the population A-symptomatic to COVID-19,” said Brue, P.h.D. “So they are carriers, but they don’t know that they’re ill.”

Brue is part of a group whose focus is to increase the effectiveness and preventiveness of treatments and illnesses by warning people to understand what they may be susceptible to, based on their genetic information.

Brue said a large population of participants in companies such as 23andMe and Ancestry.com have been receiving reports about their genetic information.

“What I would like to track is how a disease effects people of different genetic dispositions,” Brue said.

A clearer picture of genetic markers linked to disease is forming from incoming information and volunteer participants. Brue correlates the effectiveness of treatments participants have received based on their genetic bands.

COVID-19 is becoming one of the best documented cases of a pandemic, and it is Brue’s hope that the group’s findings will apply to a bigger picture, triggering further scientific research of other disease processes as well.

“What I would want people to know is we have greater capacity to understand what is happening than we have ever had before,” Brue said. “If we didn’t take advantage of learning as much as we possibly can, we would be horribly remiss in not using data that we have on hand to try to improve people’s health care, and understand on the onset, what is the most effective treatment for those who are ill.”

The three inventors of the new program combine expertise in several disciplines. Ultimately they want to save lives.

Brue has an extensive background in physics and artificial intelligence/machine learning, and medical image processing. He earned his doctorate at the University of Oklahoma. Brue said he understands how sensors work and how to get the best information from them.

“What I know very well is how to extract information from measuring apparatuses that we’re using,” he said. 

Warren Gieck, of Calgary, Alberta, is an entrepreneur and industrial engineer, with experience in software development, artificial intelligence, robotics, mechatronics, and product development. 

“Our motivation is the suffering of our friends and society around us. And just as importantly, we are dads whose kids just want to go back to school,” Gieck said. “With extensive scientific and engineering expertise, we have built solutions using similar technologies for industrial applications, and we saw how we could help solve the uncertainty around the Covid-19 virus.

“Ultimately our goal is to allow people who are low risk to get back to their lives.”

A.J. Rosenthal of Midland, Texas, has a background in multi-disciplinary engineering solutions, nuclear engineering technology, and finance. Kyrie Cameron, attorney at Patterson + Sheridan, has assisted these inventors in filing their patent applications.   

“I want to figure out a way that we can better identify what people should be looking for in their own health care,” Brue said.

The goal is provide people a better understanding of how to take care of their personal health. By understanding individual risks, individuals would be able to provide care providers a better understanding of how they should be treated should they be in poor health, Brue said. As a result, physicians would have more concrete information to work with in patient care.

Brue said one of the worst aspects of what anyone goes through when they become sick is their uncertainty. A lot of people are concerned and scared of COVID-19.

“I have lived through enough personal losses to see how much the damage is on not just the person who’s ill, but their entire family around them,” Brue said.

His goal is to reduce anxiety by educating people about disease processes.

“It’s personally important to me,” Brue said.

https://www.newsbreak.com/news/1549875006654/investigator-unraveling-mystery-of-covid-19-genetic-markers-and-virus-susceptibility